LowPT: Chasing the Dphi problem Lina Galtieri, Bill Quayle, Simone Pagan Griso #### Outline: Looking at shapes of distributions for data and background in the 2011 sample (2011 analysis) - Study of Delta(phi) shown on May 7 - Study of Isolation and Impact Parameter - Study of Delta(eta) (later) ## Study of Shapes of distribtutions - Looked at shapes of of the $\Delta \phi_{ll}$ distributions for different backgrounds to see if any of them expects an enhancement where we see the excess. - Turns out that: WW, W+jets and NonWW backgrounds (with present statistics) have a distribution not too different from signal for $\Delta \phi_{11} < 1.8$. ## Delta(MET-Sublead lepton) Looked at angle between the MET and the SubLead Lepton. Data agrees with background shapes. # Isolation and Impact parameter Studies - Will compare Iso variables and impact parameter distributions for events with a muon as SubLead with those from other categories of events - Investigate the correlations of Isolation and d0 with the Delta(Eta) anomaly. n ## Isolation criteria used in 2011 analysis - Allow electrons and muons with 10 < p_T < 15 GeV with tightened isolation requirements - → electrons - pile-up corrected etcone30/p_T < 0.05 - (baseline: corr. etcone30/p_T < 0.14) - ptcone40/p_T < 0.1 - (baseline: ptcone30/p_T < 0.13) - → muons - pile-up corrected etcone30 < -0.25 GeV + 0.058 * p_T - (baseline: corr. etcone30/p_T < 0.14) - ptcone40/p_T < 0.1 - (baseline: ptcone30/pT < 0.15) - Documentation in : - → https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWWlvlvCutWinter2012 4 March 2012 c. mills (Harvard U.) 22 #### ET-Iso #### e Sublead This shows that the shape of the distributions remains the same as we go from no-cuts, Jet-veto to final plot (DPhi<1.8) #### ET-ISO vs DELTA(PHI) - •The region where the excess is, corresponds to the peak of the Isolation distribution. - This is true for both the SubLead electrons or muons. - Very few outliers #### Impact parameter significance Lead and Sublead d0 have different distributions •For Sublead e or mu, the shape remains the same as we go down the cut flow ### D0 SIGNIFICANCE-vs-Delta(phi) - Again, the Dphi region where the excess is, corresponds to the peak of the distribution of the impact parameter. - No hint about the excess origin so far. ### Delta(Etall) Distributions Δη distributions are shown for a Dphill cut at 1.8 after the Mll cut (Cut0jt?) The 145 events for the em channel. The Data has a peak at ~0 while the WW and the signal do not. - The W+Jets distribution (azure), with low statistics (bins are double the size) and the non-W (magenta) backgrounds seem to peak at ~0 - Looked at many scatter plots. No smoking gun yet. What is it correlated with? ## Backup Slides ## **Backup Slides** #### Flavor Dependence of Excess Need to understand how Antonio's break trough (contamination of the subleading muons) enters into the excess. #### Cutflow for different flavors | Lepton channel | ee | μμ | eμ | all | | |--|-----------------|----------------|----------------|----------------|-------------------| | Cut 11 | | | | | | | signal | 2.2 ± 0.2 | 5.1 ± 0.3 | 13.3 ± 0.9 | 20.6 ± 1.3 | | | Total Back | 159 ± 24 | 271 ± 33 | 770 ± 114 | 1201 ± 170 | | | observed | 144 | 263 | 828 | 1235 | | | Jet Veto | | | | | | | signal | 1.4 ± 0.1 | 3.3 ± 0.3 | 8.9 ± 0.8 | 13.6 ± 1.2 | | | Total Back. | 41 ± 9 | 80 ± 15 | 255 ± 63 | 376 ± 85 | | | observed | 43 | 81 | 282 | 406 | | | $P_{T,ll} > 45,30 \text{ GeV}$ | | | | | | | signal | 0.76 ± 0.08 | 1.6 ± 0.2 | 7.5 ± 0.7 | 9.8 ± 1.9 | 1 | | Total Back. | 9.7 ± 3.1 | 15 ± 2 | 90 ± 10 | 115 ± 14 | <pre>excess</pre> | | observed | 6 | 20 | 117 | 143 | CAUCUU | | Final Sample, with $\Delta \Phi < 1.8$ | | | | | | | signal | 8.9 ± 0.8 | 0.7 ± 0.1 | 1.6 ± 1.1 | 6.6 ± 0.6 | | | Total Back. | 9.3 ± 3.0 | 14.2 ± 2.3 | 73 ± 8 | 96 ± 11 | <pre>excess</pre> | | Observed | 5 | 19 | 100 | 124 | | No excess in ee, excess in both $e\mu$ and $\mu\mu$